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Abstract

Numerical approximation of shock hydrodynamics is at the core of multiphysics
simulations. Artificial viscosity enables shock capturing by augmenting the
hydrodynamics equations with an artificial term. For high-order simulations,
smart artificial tensors need to turn themselves off in regions where the solution
is smooth in order to preserve the convergence properties of the method. In this
work, we present a high-order hyper viscous term that achieves shock capturing
while remaining high-order. Furthermore, we propose an assembly-free imple-
mentation of the artificial viscous term that improves scalability and maximizes
performance. Simulations were run with the Laghos miniapp in MFEM.

Hydrodynamics Equations

Inviscid gases are modeled by the Euler-Equations

Euler Equations

Continuous Form Discrete Form Type of Physics
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dt
= ∇ · σ MV

dv

dt
= −F · 1 momentum conservation

ρ
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= F⊤ · v energy conservation
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= v equation of motion

where ~x = position, ~v = velocity, ρ = density, e = internal energy, and
σ = −EOS (ρ, e) I is the stress tensor given by the equation of state.

Artificial Viscosity

To facilitate shock wave propagation, the stress tensor is augmented by an arti-
ficial stress tensor

σ = −EOS (ρ, e) I + σa

The artificial stress tensor is defined by a viscous coefficient, µ, and a sym-
metrized velocity gradient, ǫ(v), as

σa = µ ǫ(v) , ǫ(v) ≡ 1/2 (∇v + v∇)

The coefficientµ is defined in terms of some measure of compression (or velocity
jump)

• Standard: µ = µstd ≡ ρ
(

q2h
2 |∆sv|+ q1ψ0ψ1hcs

)

• Hyperviscosity: µhyp ≡ q3ρh
2k|∆ks|, µ = min

(

µstd, µhyp

)
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)
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(
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, ∆k = k-th order Laplacian

The standard viscous term achieves shock capturing but remains low-order
while the hyperviscous term is able to do both.

Finite Element Formulation of Hyperviscous Term

In implementing the hyperviscous term of the artificial stress tensors a Lapla-
cian operator of the form f = ∆u must be discretized using finite elements. We
proceed by formulating a weak form of the operator using a Galerkin method:

∫

Ω

f φi dx =

∫

Ω

∆uφi dx = −
∫

Ω

∇u · ∇φi dx+

∫

∂Ω

(∇u · ν̂)φi dx

where φi (x) corresponds to the basis function associated with the i-th degree
of freedom, and all functions are expanded in terms of the basis functions as

f ≈
∑NDOF

j fj φj . By replacing the expansions we get the linear system:

Mf = Su → f = M−1Su

where the mass matrix, M , and the stiffness matrix, S, are given by

mij =

∫

Ω

φi φj dx, sij =

∫

Ω

∇φi · ∇φj dx+

∫

∂Ω

(∇φj · ν̂)φi dx

and thus the discrete Laplacian operator becomes ∆ ≈ M−1S. Higher order
Laplacians are calculated by successive applications of this discrete operator.

Figure 1: Convergence study of the discrete Laplacian operator applied to
f = 1/c sin (cx) cos (cy) with exact solution ∆f = −2c sin (cx) cos (cy)

Matrix-Free Laplacian

The k-th order Laplacian can be computed in discrete form using two operators:

• Derivative matrix (cheap, “low-order”): ∆kf (x) ≈ D2k
x f +D2k

y f

• Variational form (expensive, high-order): ∆kf (x) ≈
(

−M−1S
)k

f

We want an assembly-free form of M and S that is scalable and cheap to apply.
For rectangular and hexahedral elements tensor products of matrices arising
from 1D operators enable low-operation-count matrix-vector multiplications,
O
(

pd+1
)

operations:

M → mk1,k2,i1,i2 = m1
k1,i1m

2
k2,i2

v = Mu → vk1,k2
= mk1,k2,i1,i2ui1,i2 = m1

k1,i1ui1,i2m
2
k2,i2

When running parallel jobs with this method exchanging information between
element boundaries is the only communication needed.

Hydrodynamics Results for Smooth Solutions

Figure 2: No artificial viscosity Figure 3: Standard (dashed) and hyper
(solid) artificial viscosity

Figure 4: Taylor-Green

Using the Taylor-Green vortex we can
study the convergence properties of the La-
grangian hydrodynamics equations. Our
results confirm that the standard stress ten-
sor is first order convergent while high-
order convergence is achieved when the hy-
perviscous term is used.

Hydrodynamics Results for Non-Smooth Solutions

Figure 5: Radial results Figure 6: Sedov blast

Conclusions and Ongoing Work

In this work a high-order hyperviscous term is presented and shown to work for
a range of problems with and without smooth solutions. An assembly-free form
of the operators is currently being implemented and we expect to see an overall
performance improvement of the running time due to the reduced operation
count when applying 1D tensors. We also plan to use GPUs to accelerate even
further the overall execution on high-performance computing systems.
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